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Abstract

We investigate the behavior of the isolated mantled porphyroclast in a shear zone. The method employed is a finite element model. Three

distinct phases, clast, mantle and matrix are present, the rheologies are power-law with exponents ranging from 1 to 5 and the far-field

boundary condition is simple shear. The effective viscosity of the mantle is assumed to be less than those of the clast and the matrix. We show

for which parameter sets mantled porphyroclasts reach super-horizontal stabilization with respect to the shear plane and sense. Clasts in

natural mylonites frequently exhibit similar orientations, which are interpreted as stable inclinations. The systematic examination of the

matrix–mantle–clast system allows for the construction of attractor maps that can be directly used as gauges for (i) the effective viscosity

contrast between matrix and mantle, (ii) the production rate of mantle material around the clast as a function of the bulk shear strain, and (iii)

for the total shear strain. The necessary data required to use the attractor maps are simple geometrical parameters that can be measured in the

field, i.e. clast aspect ratio, clast inclination versus the shear plane, mantle thickness, and mantle and clast area. This new method successfully

reproduces the characteristics of natural porphyroclasts and is in good agreement with data from natural shear zones.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The frequent observation of mantled porphyroclasts in

mylonitic shear zones in combination with their distinct

geometries and often systematic orientation has stimulated a

major quest to find possible applications as gauges capable

of providing quantitative data on rheology, kinematics, and

dynamics. While there appears to be common agreement on

the usefulness of mantled porphyroclasts as indicators of

shear sense (e.g. Hanmer and Passchier, 1991), all other

possible interpretations as natural microgauges are still

disputed. In particular, it is unclear if and how mantled

porphyroclasts record information on the vorticity of the

bulk flow (Ghosh and Ramberg, 1976; Marques and Coelho,

2001; Pennacchioni et al., 2001; ten Grotenhuis et al., 2002;
0191-8141/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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Mancktelow et al., 2002; Ceriani et al., 2003; Schmid and

Podladchikov, 2004; Taborda et al., 2004), if they are

reliable measures of rheology (Passchier et al., 1993; Bons

et al., 1997; Pennacchioni et al., 2000; Piazolo et al., 2002),

and to which extent they record finite strain (e.g. Piazolo

and Passchier, 2002).

We believe that much of the uncertainty stems from the

fact that the most basic requirement to study mantled

porphyroclasts in a shear zone is often disregarded, namely

that the mantled porphyroclasts in a matrix represents a

three-phase system: the clast, the mantle, and the matrix.

Consequently three possibly different material properties

must be introduced. Nevertheless, previous studies have

frequently modeled the mantle as a passive strain tracker in

the matrix, starting from Passchier and Simpson’s (1986)

pioneering work. Furthermore, the clast is often designated

rigid, essentially reducing the three-phase system to one

single rheological phase.

This single-phase reduction is also inherent to the usually

employed ellipse-shape based analytical solutions. The
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Fig. 1. Initial experiment configuration. A highly viscous ellipse (dark gray)

is coated with a low viscous, lubricant layer (light gray), and embedded in a

matrix of intermediate effective viscosity. The sketch is not to scale with

respect to the actual clast–matrix size relationship. The aspect ratio of the

ellipse is given by the ratio of the two axes, a/b. The orientation of the

inclusion is measured as the angle j, between the long axis and the shear

plane, with jO0 designating counterclockwise values. The thickness of the

lubricant, H, is measured in percent of the local ellipse radius. The

boundary conditions applied are simple shear velocity on all sides. The

shear angle f is a measure of the achieved shear strain g.
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well-known solution for rigid particles in simple shear was

derived by Jeffery (1922) and extended to contemporaneous

pure and simple shear by Ghosh and Ramberg (1976). The

interest in the behavior of isolated inclusions is, however,

not restricted to geology but is relevant to a large part of the

scientific community. Based on the alternative analytical

solutions by Muskhelishvili (1953) and Eshelby (1959),

researchers in the fields of composites and defects in solids

have derived expressions for inclusions with imperfect

bonding to the matrix (e.g. Mura, 1987; Furuhashi et al.,

1992; Gao, 1995; Ru and Schiavone, 1997; Shen et al.,

2001). An important finding of these recent works is that the

so-called Eshelby conjecture (Mura, 2000) does not hold for

a cylindrical or elliptical inclusion with a slipping interface.

The Eshelby conjecture states that homogeneous, i.e.

constant with respect to spatial coordinates, stresses applied

at infinity cause constant stresses inside the inclusion.

Irrespective of inclusion orientation, aspect ratio, and actual

combination of pure and simple shear, the stress state inside

the inclusion can be completely described by a single tensor.

This result is of fundamental significance for geological

applications, where the observed systems are likely to show

imperfect bonding between clast and matrix; either due to

interfacial slip or the presence of a third (mantle) phase.

Inhomogeneous stress states inside the inclusion are not

only expected to change the flow patterns, but may cause

transitions into different deformation mechanism fields,

drive metamorphic reactions, and be the cause for asym-

metric zoning (e.g. myrmekite distribution; Simpson and

Wintsch, 1989).

The subject of this paper is the two-dimensional,

numerical modeling study of the isolated three-phase

(mantled) porphyroclast system with elliptical geometries,

subject to simple shear. Given the large natural differences

in grain sizes between clast and mantle material and the

amount of strain localization in the mantle we assume that

the mantle material is the weakest (lowest effective

viscosity) phase in the system and analyze the consequences

of this hypothesis. In the context of the numerical models

we will refer to this weak mantle material as ‘lubricant’,

which is a geologically neutral terminology, also applicable

to the end-member case where the thickness of the lubricant

vanishes, but slip is allowed on the inclusion–matrix

interface (e.g. Samanta and Bhattacharyya, 2003).

In the following section of the paper the model

method and setup are explained. Then the influence of a

lubricating layer on the stress distribution and the

rotation rate at initial and finite stages is demonstrated

with examples of circular and elliptical inclusions.

Finally we show under which conditions lubricated

inclusions have stable positions and how viscosity

contrast between matrix and lubricant, the production

rate of fine-grained mantle material, and the accumu-

lated bulk shear strain can be estimated from geometri-

cal parameters by means of attractor maps.
2. Numerical method and setup

The numerical model used is a personally developed (by

the first author) two-dimensional FEM code using the seven

node Crouzeix–Raviart triangle (Crouzeix and Raviart,

1973) to solve the Stokes equations for incompressible,

slowly creeping, viscous materials. A mixed method is

employed, with linear interpolation of pressure, which

avoids spurious pressures usually appearing due to the

incompressibility constraint (Brezzi and Fortin, 1991).

The initial configuration of the numerical experiments is

depicted in Fig. 1. Since the presence of boundaries may

influence the behavior of a rotating inclusion (Ildefonse et

al., 1992; Bons et al., 1997; Marques and Coelho, 2001),

care was taken to avoid such boundary effects. In all models,

the length of the clast is only 5% of the shear zone width and

the lateral boundaries are even farther apart, with the length

of the ellipse only 1–2% of the box length. The thickness of

the lubricating layer, H, is given in percent of the local

ellipse radius and ranges from 0 to 50%. The boundary

conditions applied to all sides of the experimental box are

(constant shear strain rate) simple shear velocities. The

definition of the shear strain rate is:

_gZ
vvx

vy
(1)

where vx is the horizontal velocity in the Cartesian

coordinate system (Fig. 1). Hence positive _g values denote

top to the right shearing, which is the case for all presented

experiments.

The studied rheologies are Newtonian and non-New-

tonian power-law, for which the relationship between

deviatoric stresses, tij, and strain rates, _3ij, can be written
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in general form as (e.g. Ranalli, 1995):

tij Z 2h_3ij (2)

h is the effective viscosity of the material and defined as:

hZB_3 l=nK1ð Þ
e (3)

where _3e is the effective strain rate, n is the power-law

exponent, and B is a pre-exponential material constant,

which in the case of a Newtonian material (nZ1) is the

viscosity. The definition of _3e is:

_3e Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_3xx K _3yy

2

� �2

C _32xy

s
(4)

and follows the Mohr circle construction (Jaeger and Cook,

1979) of the maximum or effective shear stress se:

se Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
txx Ktyy

2

� �2

Ct2xy

r
(5)

For scalability the viscosities are given as relative values.

Unless stated otherwise, the clast is assumed to be 1000

times stronger, i.e. more viscous, than the matrix. The

viscosity of the lubricant is a fraction of the matrix viscosity

ranging from 1:2 to 1:50,000. While viscosity contrasts are

clearly defined for Newtonian materials, the case of power-

law materials is less straightforward, because a priori

unknown strain rates enter the expression of the effective

viscosities. As a proxy, the applied far-field strain rate

values may be used to evaluate the effective viscosities.

However, due to the expected strain rate localization in the

weak lubricant, the calculated values will not correspond to

the actual experiment values. Ten and Yuen (1999) have

pointed out that even a small difference in the values of clast

and matrix behaving as power-law materials can result in

large effective viscosity contrasts.

Concerning the finite element mesh resolution the

following strategy was used. (1) The sharpest gradients in

material properties and resolution occur in and near the

clast–lubricant couple. Therefore the required mesh resol-

ution is here highest. Further away, in the matrix, the

material properties are constant and the solution parameters

close to the far-field boundary condition values, which is

easily resolved with a rather coarse mesh. Typical total

mesh resolutions are 50,000 elements and 200,000 nodes.

(2) Due to the large overall and local strains expected for the

problem, continuous remeshing was applied for the finite

strain runs, whereby the surrounding box was kept

rectangular and only the contours of the lubricant layer

and the elliptical inclusion were actually moved and a new

mesh was generated for every time step. With this

procedure, the danger of mesh distortion is eliminated and

the only restriction on achievable strains results from the

increasing memory usage due to the ever-growing number

of elements, caused by the formation of tails and thinning of

the lubricant around the ellipse.
3. Circular inclusions

3.1. Initial stages—Newtonian

In order to understand the characteristics of lubricated

clasts we start with the simplest one, having a circular shape

and Newtonian rheologies. A series of six different

experiments are analyzed in terms of pressure p (Fig. 2)

and the corresponding maximum shear stress values (Fig.

3). Note that compressive pressures are positive and only

perturbation values are shown. Hence an arbitrary lithostatic

component may be added without any influence on the

results. Furthermore, all stress components are normalized

by the characteristic far field stress, i.e. _ghmatrix.

The end-member cases of clasts are the very strong (Fig.

2a) and the very weak (Fig. 2d), with no lubricant layer

present. As expected, high pressures occur adjacent to the

strong inclusion in the two quadrants where the simple shear

streamlines impinge on the inclusion. The other two

quadrants are in relative tension, exhibiting pressure lows

that would in nature be the potential sites for the

development of pressure shadows (e.g. Passchier and

Trouw, 1996). Due to the symmetry of the system, the

absolute amplitudes of the pressure perturbations in all four

quadrants are equal. If the viscosity contrast between clast

and matrix is flipped from 1000:1 to 1:1000 (Fig. 2d), not

only the viscosity contrast is inverted but also the pressure

perturbation field: compressional areas become tensional

and vice versa. Interestingly the inside of the inclusion

remains at background (lithostatic) pressure in the case of a

strong as well as a weak clast.

Similar observations can be made in the case of the

maximum shear stress, which also undergoes a ‘flip’ if the

viscosity contrast is inverted (Fig. 3a and d). In contrast to

the pressure, the maximum shear stress values inside the

clast are sensitive to the viscosity contrast between clast and

matrix. If the clast is strong it must resist the applied far-

field flow conditions and therefore se is high; if the clast is

weak, it readily deforms with the applied simple shear and

therefore the stresses are low. In order to map between stress

and strain rate, the displayed maximum shear stress must be

divided by two times the material viscosity to obtain the

maximum shear strain rate, cf. Eqs. (2), (4) and (5). An

example of this mapping is given with the effective strain

rate insert in Fig. 3f.

The introduction of a lubricant layer between the strong

clast and the matrix renders the Eshelby conjecture invalid;

i.e. the clast values are no longer constant, as displayed in

the non-end member cases of Figs. 2 and 3. Qualitatively,

the lubricant allows propagation of the outside pressure

perturbations into the lubricant and the clast. In the case of

the maximum shear stress the lubricant represents a ring

of low values, which cause lower values in the outer parts of

the strong clast as previously observed by Kenkmann (2000).

The influence of a lubricant layer may essentially be sum-

marized as follows. The less viscous (Fig. 2b and c, e and f)



Fig. 2. Pressure perturbations caused by circular inclusions with rims of varying thickness and viscosity in simple shear. Note that (i) the shear sense in all

experiments is top to the right, (ii) only the region immediately surrounding the inclusion is displayed but the full model is much larger, and (iii) all viscosities

are normalized by hmatrix (as is always the case throughout this paper). (a) HZ0, hclastZ1000; (b) HZ10, hclastZ1000, hlubricantZ1/10; (c) HZ10, hclastZ
1000, hlubricantZ1/1000; (d) HZ0, hclastZ1/1000; (e) HZ30, hclastZ1000, hlubricantZ1/10; (f) HZ30, hclastZ1000, hlubricantZ1/1000.
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or the thicker the lubricant layer is relative to the clast (Fig.

2b and e, c and f), the more the pressure perturbation field in

the matrix and inside the clast–lubricant couple starts to

resemble the case of the weak inclusion directly bonded to

the matrix; compare Fig. 2f with Fig. 2d. The same holds for

the maximum shear stress; compare Fig. 3f with Fig. 3d.
3.2. Effect of finite strain

The effect of large strain is illustrated in Fig. 4, based on

the rigid circular inclusion with HZ10, hlubricant/hmatrixZ1/

1000 (cf. Figs. 2c and 3c). The achieved shear strain is gZ
0.56 (see Fig. 1 for the definition of g). This is sufficient to

significantly decrease the lubricant thickness in the

compressive quadrants and start to form tails. The geometry

of the clast–lubricant couple is f-type (Passchier and

Trouw, 1996), which would evolve into a s-type with

increasing strain (Ceriani et al., 2003). The stress distri-

bution still closely resembles the corresponding initial

situation, but the increasingly sharp tail tips start acting as
stress concentrators, like the tips of a crack (Jaeger and

Cook, 1979). Interestingly, the rotation rate _j of the circular

clast is almost unaffected by the presence of a lubricating

layer. Throughout the experiment the rotation rate was

essentially half the applied simple shear rate, which is the

predicted value for a rigid circle perfectly bonded to the

matrix (Jeffery, 1922). This observation agrees with

analogue experiments (Ceriani et al., 2003) and was

analytically predicted for perfect cylindrical geometries by

Schmid and Podladchikov (2003).
4. Elliptical Inclusion

4.1. Initial stages—Newtonian

The characteristic behavior of lubricated elliptical

inclusions is discussed based on an elliptical clast with

aspect ratio 2:1 (Fig. 5). If there is no lubricant the pressure

perturbation field and the maximum shear stress resemble



Fig. 3. Effective shear stresses caused by circular inclusions with rims of varying thickness and viscosity in simple shear. The configuration of (a)–(f) is

identical to Fig. 2a–f. The insert in (f) shows the corresponding effective strain rate field.

Fig. 4. Pressure perturbation (a) and effective shear stress field (b) resulting from a finite strain experiment, gZ0.56, based on the initial configuration shown in

Figs. 2c and 3c (HZ10, hclastZ1000, hlubricantZ1/1000).
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Fig. 5. Pressure perturbation ((a)–(c)) and corresponding effective shear stress fields ((d)–(f)) resulting from elliptical clasts (a/bZ2) in simple shear. (a) and (d)

jZ0, HZ0, hclastZ1000; (b) and (e) jZ0, HZ10, hclastZ1000, hlubricantZ1/1000; (c) and (f) jZ45, HZ10, hclastZ1000, hlubricantZ1/1000.
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largely the corresponding circular case; compare Fig. 5a

and d with Figs. 2a and 3a. When a lubricant is

introduced in the case of a shear plane parallel elliptical

clast (jZ08), a viscosity contrast of hlubricant/hmatrixZ1/

1000 and a thickness of HZ10 are already sufficient for

the pressure perturbation and effective shear stress to

vanish within the inclusion (Fig. 5b). This reflects the

analytical prediction of Stagni (1991) who found that an

elliptical inclusion with imperfect bonding to the matrix

should remain stress free when subjected to remote

simple shear parallel to the long axis of the ellipse, i.e.

in this special case the Eshelby conjecture essentially

holds for imperfect bonding. This can also be observed

in the orthogonal case (jZ908), which is a degenerate

case of the shear plane parallel ellipse. The influence of

intermediate inclination angles is illustrated with the

case of jZ458 in Fig. 5c and f. Interestingly, the

central parts of the strong clast experience overpressure,

although the clast is orientated here parallel to the

direction of maximum extension of the simple shear

flow.
4.2. Initial stages—power-law

Realistic rock rheologies exhibit non-linear relationships

between stress and strain rate, cf. Eqs. (2) and (3). In the

experiment displayed in Fig. 6 the matrix and the lubricant

have a power-law exponent of three, while the clast is

Newtonian with a viscosity that is a 1000 times higher than

the far-field matrix value. Based on the far-field simple

shear rate the effective viscosity contrast between lubricant

and matrix was tailored to be 1:10. However, due to the

local variations in stress and strain rate the effective

viscosity contrast deviates from the predicted value. Fig.

6c and d illustrates the complexity of the non-linear material

behavior by focusing on different ranges of the effective

viscosity values. Where the material experiences the highest

stress it exhibits the highest strain rates and consequently

the effective viscosity is lowest and vice versa, cf. Fig. 6b

and c. While the matrix values of effective viscosity near the

clast are relatively close to the background-based predicted

value of one, the values in the lubricant show larger

deviations. In fact the effective viscosities in the lubricant



Fig. 6. Effect of non-linear power-law material properties on the pressure perturbation (a) and effective shear stress field (b) for a lubricated clast with a/bZ2,

HZ5, and jZ30. While the clast has a Newtonian viscosity of 1000, the matrix and the lubricant have a power-law exponent of three. The background strain

rate ( _g) based determination of the effective viscosity contrast is hlubricant/hmatrixZ1/10. However, due to the deviation of the effective strain rate with respect to

_g the actual effective viscosity contrast is larger ((c) and (d)).
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are approximately one order of magnitude too low (Fig. 6d),

close to 0.01 in most of the lubricant instead of the predicted

0.1. The reason is the high effective strain rate in the

lubricant layer (cf. Fig. 3f). The resulting heterogeneities in

the effective viscosities cause pressure and maximum shear

stress fields in the model to deviate from the corresponding

Newtonian case. However, some of the basic characteristics

in terms of high and low locations and patterns of dynamic

parameters such as pressure and maximum shear stress are

preserved.
4.3. Finite strain

The finite strain behavior of lubricated elliptical clasts is

illustrated in Fig. 7, based on the previously discussed
experiment in Fig. 5b and e (a/bZ2, HZ10, and hlubricant/

hmatrixZ1/1000). The achieved shear strain in Fig. 7 is gZ
0.86, which suffices to substantially decrease the lubricant

thickness in the compressive quadrants, to form s-type tails,

and bring the particle into a meta-stable position. As in the

case of the circular inclusion the progressively increasing

sharpness of the tail tips acts as a stress concentrator.

In contrast to the circular case the introduction of a

lubricant layer has a drastic effect on the rotational behavior

of the elliptical inclusion (cf. Fig. 8). Starting from its initial

position parallel to the shear flow the clast rotates

backwards, i.e. antithetically against the applied simple

shear flow. With increasing shear strain the inclusion

approaches a quasi-stable inclination of approximately 308

to the shear plane. This inclination is not truly stable due to



Fig. 7. Finite strain experiment. From its initially shear-plane parallel orientation the clast–lubricant couple rotates antithetically against the applied shear and

develops a s-type shape. a/bZ2, HZ10, hclastZ1000, hlubricantZ1/1000, gZ0.86.
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the continuous movement of lubricant towards the tails.

With decreasing lubricant thickness the particle is expected

to resume its synthetic (forward) rotation, move towards the

shear plane, and eventually rotate again according to

Jeffery’s theory (Ceriani et al., 2003).
5. Lubricated inclusion rotation map (LIRM)

5.1. Construction concept

The effect of a lubricant layer can be summarized as
Fig. 8. Analysis of the finite strain experiment from Fig. 7. (a) Shows the evolutio

the Ghosh and Ramberg (1976) theory. (b) Plots the normalized rotation rate versu

(1922) analytical theory. Note that both analytical theories were derived for perf

drastic effect that a lubricating layer (or imperfect bonding) has on the clast beha
follows The introduction of a lubricant substantially alters

the dynamics (p and se) and the kinematics ( _j) of elliptical
inclusions. On the other hand, the progressive development

of tails does not appear to significantly influence the

dynamics or the kinematic behavior of the inclusion, which

was also demonstrated by means of analogue modeling

(Ceriani et al., 2003). The tails act in a crack-like manner far

away from the strong clast, yet the stress distribution in the

direct vicinity of the inclusion remains almost identical to

the case of a lubricated porphyroclast without tails. There-

fore the influence of the tails is purely one of mass balance:

the formation of tails reduces the thickness of lubricant
n of inclination with increasing shear strain and makes the comparison with

s the inclination resulting from the numerical experiment and from Jeffery’s

ect bonding between clast and matrix and are plotted here to illustrate the

vior.
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material around the inclusion. We deduce that tail formation

is not a first order effect and we test this hypothesis by

comparing instantaneous, single time-step experiments with

finite strain experiments. This is done with the aid of a so-

called ‘lubricated inclusion rotation map’ (LIRM). Each

LIRM summarizes several hundred single time step

experiments in which, for a given aspect ratio and lubricant

viscosity, the rotation rate _j and the lubricant thickness

change rate _H were measured as a function of orientation

angle j and lubricant thickness H (at the intersection of the

clast ellipse short axis with the lubricant layer). Note that all

rates are normalized by the far-field simple shear rate _g, i.e.
for small time Dt intervals these rates are:

_j ¼
1

_g

Dj

Dt
(6)

_H ¼
1

_g

DH

Dt
¼

1

_g

Dh

bDt
100 (7)

_H is a key parameter because it characterizes the

lubricant behavior over the largest part of the inclusion

surface, i.e. the sides sub-parallel to the long axis. _H
controls whether this channel-like region increases or

decreases in thickness, in competition with the tails. In

contrast to the tails, these lubricant channels exert tractions

on the clast and therefore must be considered when studying

the behavior of an elongated, lubricated inclusion. Indeed,

the comparison with a channel flow driven by pressure

gradients seems appropriate if the pressure along the

channel is taken into account. It is clear from the figures

in the previous section that pressures are highest near the

center of the channel and lowest in the pressure shadow

zones into which the material is expelled.

The two building blocks of a LIRM, _H and _j as a

function of j and H, are shown in Fig. 9a and b, with the

example of an inclusion of aspect ratio 2:1 and lubricant to

matrix viscosity contrast of 1/1000 (linear viscous). As

already demonstrated the introduction of a lubricant layer

has a strong influence on the rotation rates (Fig. 9b). With

increasing H, the rotation rates go rapidly from Jeffery’s

solution (zero lubricant) into a steady field in which back-

rotation occurs for orientations close to the shear-plane. For

the present case of large viscosity contrast between matrix

and lubricant, this steady field is reached with only 2%

lubricant. The _j field is always symmetric around jZ0. _H,

on the other hand, does not show this symmetry around jZ
0, is more sensitive to the amount of lubricant, and does not

show a steady state with respect to H (Fig. 9a).

For lubricated clasts at any location in the jKH plane _j
and _H essentially represent velocity vectors, which describe

where in the plane the clast will move to next. _j represents

the vertical velocity component and is characterized by the

back-rotation field around jZ0 (underlain in dark gray;

Fig. 9d), which is limited by the _jZ0 contour. Once the

clast has reached this contour it will stop rotating. However,
for two reasons the _jZ0 contour is only meta-stable. (1)

The velocity arrows in Fig. 9c point away from the negative

leg of _jZ0. Hence, small perturbations will cause the clast

to move away from the negative leg towards the positive

leg, which, due to the vertical periodicity of the graph, can

be reached from the entire jKH plane, either by synthetic

forward-rotation or antithetic back-rotation. Therefore the

positive leg of _jZ0 is called ‘attractor line’. (2) With

respect to the clast rotation only, the attractor line is stable.

However, any location in the jKH plane is only truly stable

if _j and _H vanish. Hence the velocity vector components

resulting from _H must also be analyzed (Fig. 9c). Analogous

to _j the bulk behavior can be divided into two regions.

Inside the _HZ0 contour (underlain in light gray) the

lubricant thickness at the ellipse short axes decreases,

outside it increases. Since neither the contours of _jZ0 and
_HZ0 in this, nor in any other experiment performed,

intersect in the positive half of the jKH plane the attractor

lines must also be considered meta-stable (unless mantle

material production rate is considered, which is done

below).
_j and _H are the building blocks of a LIRM. If we add the

individual velocity vector components we obtain total

velocity vectors in the jKH plane (Fig. 9e). These velocity

vectors should approximate the complex finite strain

behavior of mantled clasts. In order to verify this, finite

strain experiments like the one in Fig. 7 were performed

with randomly chosen starting positions in the jKH plane

and their trace plotted as solid arrows on the presented

LIRM (aspect ratio, viscosity contrasts, and power-law

exponents, nZ1, were kept identical in the single time step

and finite strain experiments). The traces of the finite strain

experiments follow the velocities derived from single time

step experiments quite well and clearly indicate the

attraction potential of the attractor line. This substantiates

the hypothesis that the tails are not a key parameter in the

mantled porphyroclast system and the complex finite strain

behavior of mantled clasts can be approximated by single

time step experiments with perfect elliptical geometries.
5.2. Influence of viscosity contrast and production of mantle

material

In order to account for the natural variability in aspect

ratios and viscosity contrasts, LIRMs and the corresponding

attractor lines must be calculated for every individual case

If, for the given aspect ratio of 2/1, the viscosity contrast

between lubricant and matrix is increased from 1/1000 to

1/50,000 essentially the same result (attractor line) is

obtained. However, decreasing the viscosity contrast from

1/1000 to 1/2 (Fig. 9f) leads to the observation that (i) the

corresponding maximum inclination angle of the attractor

line decreases, (ii) the field of back-rotation therefore

becomes smaller, and (iii) more lubricant (larger H) is

required for stopping the clast rotation. In the case of a



Fig. 9. Construction of a ‘lubricated inclusion rotation map’ (LIRM) illustrated by means of a Newtonian example with a/bZ2, hclastZ1000, hlubricantZ1/1000.

For each position in the jKH plane a single time step experiment is performed and the rotation rate ( _j) and the lubricant thickness change rate at the ellipse

short axis ( _H) measured. (a) Instantaneous lubricant thickness change rate as a function of inclination and lubricant thickness. (b) Instantaneous rotation rate as

a function of inclination and lubricant thickness. (c) Velocity vectors resulting from the thickness change rate only. (d) Velocity vectors resulting from the

rotation rate only. Note the vertical periodicity and the attractor line (see text). (e) LIRM with the total velocity vectors resulting from the single time step

experiments (thin, short arrows) and the jKH plane traces of finite strain experiments (thick, long arrows). (f) Influence of lubricant viscosity on the attractor

lines (solid lines), and mantle production rate on the zero thickness change rate contours (dashed lines). Since the attractor lines and the total _HZ0 contour

now intersect in the upper half of the graph depending on the mantle production rate, truly stable attractor points come into existence. Note that for better

readability the values of the mantle production rate are multiplied by a hundred, symbolized by _P100, and the hlubricant/hmatrix values are given at the right side of

the plot.
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viscosity contrast between lubricant and matrix of only 1/2

the lubrication was not sufficient to cause back-rotation.

Another key parameter is the production rate of mantle

material. LIRMs are constructed with a given amount of

lubricant surrounding the strong clast. However, in natural

mylonites the lubricant mantle is expected to develop

progressively during ongoing deformation. With the onset

of deformation, local stress concentrations around the

porphyroclast could lead to local cataclasis (e.g. Tullis

and Yund, 1987), crystal–plastic re-crystallization, or

formation of new phases. In this context it is important to

note the difference in scaling between velocities and

stresses. While, for given shear strain rate, the absolute

values of the velocities around the clast decrease with

decreasing size of the clast; this is not the case for the

amplitudes of the local stresses. It is clear from dimensional

and analytical arguments (Jaeger and Cook, 1979; Schmid

and Podladchikov, 2003) that the stresses are independent of

clast size and do not decrease with decreasing clast size,

opposite to what was proposed by Passchier and Simpson

(1986).

As an approximation we assume that the lubricant is

derived from the clast and produced all around the elliptical

clast with a production rate _P, which is defined analogous to
_H, cf. Eq. (7). _P describes the change in the thickness solely

due to the conversion of clast material into mantle. The total

change in lubricant thickness is now the sum of _PC _H and

therefore the zero contour lines of the (total) thickness

change rate in Fig. 9c are altered (cf. Fig. 9f). Depending on

the values, intersection points between the attractor lines

( _jZ0) and the zero mantle thickness change rate (total
_HZ0) exist now for positive inclinations and non-zero

lubricant thicknesses. Once such a point is reached a clast

will remain at the corresponding inclination as long as the

lubricant thickness, i.e. _P, remains constant. Since these

intersection points are truly stable they are termed ‘attractor

points’. Attractor points can only exist inside the field

(underlain in gray; Fig. 9f) bounded by the attractor line

where the system loses sensitivity to further increases in the

viscosity contrast between lubricant and matrix (1/1000)

and the minimum viscosity contrast attractor line where

back-rotation still occurs (1/5).
6. Attractor maps

The existence of attractor points can be summarized with

‘attractor maps’. For a given clast aspect ratio and power-

law exponent configuration all possible attractor points are

calculated and the corresponding lubricant to matrix

viscosity contrast and mantle production values contoured

(Fig. 10). Attractor maps are a potentially useful tool

because the three simple geometrical parameters, clast

inclination j, mantle thickness H, and clast aspect ratio,

allow for direct estimation of mantle production rate _P and

the viscosity contrast between mantle and matrix. The
attractor maps also allow for a comprehensive overview

over the size of the fields in which stable inclinations occur

(underlain in gray in Fig. 10), the maximum possible

inclination angle, and where back-rotation is to be expected.

The characteristics of the attractor maps are:
1.
 The iso-viscous attractor lines show the same tendency

for all aspect ratios and rheologies, namely that

decreasing the viscosity of the lubricant (relative to the

matrix) widens the field of back-rotation in the jKH

plane.
2.
 Once the viscosity of the lubricant is smaller than 1/1000

of the matrix value, the behavior of the inclusion is no

more sensitive to a further decrease in lubricant

viscosity.
3.
 Increasing the aspect ratio leads to a decrease in the

maximum stable inclination angle.
4.
 For all Newtonian rheologies (nZ1), the lubricant

viscosity has to be less than 1/2 of the matrix value for

back-rotation to occur.
5.
 The introduction of a power-law lubricant allows

stabilization to occur for an already effective viscosity

contrast of 1/2, which is, however, largely due to the

underestimation of the actual effective viscosity contrast.
6.
 The introduction of power-law rheology outside the clast

increases the maximum stable inclination angle.
7.
 Despite the differences between the corresponding

power-law and Newtonian attractor maps, the main

characteristics are identical and therefore the Newtonian

maps may be used for a first parameter estimation.
7. Application of attractor map method

7.1. Viscosity contrast and mantle production rate

estimation

The primary use of the presented attractor maps is to

estimate the rate at which the clast material was turned into

mantle material and for approximating the effective

viscosity contrast between mantle and matrix The required

data are simple geometrical parameters, measurable in the

field or thin sections. This procedure is demonstrated with

the example of the mica fish in Fig. 11. The mica is

embedded in a quartz rich matrix, the shear sense is top to

the left, and the shear plane is horizontal. Relative to the

shear plane, the clast shows a positive inclination, which is

assumed to be stable. The clast is surrounded by finer

grained material that is derived from the clast and long but

very thin tails exist.

The geometrical parameters needed for the attractor map

method are aspect ratio, inclination, and mantle thickness.

The first two parameters are easily determined and the

values are a/bZ3.5 and jZ148. The attractor map that

comes closest to the measured aspect ratio was generated for

a/bZ3, and we assume applicability of the Newtonian



Fig. 10. Attractor maps. Attractor maps allow for viscosity contrast and mantle production rate estimation if three simple, directly measurable geometrical

parameters are known: a/b, H, and j. Rows show attractor maps with identical aspect ratio, columns compare Newtonian (first) to power-law cases (second).
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version (Fig. 10c). Since the clast is not perfectly elliptical,

several ways exist to determine H, as shown in the insert of

Fig. 11. However, the average value is around Hz17, and it

is obvious from the corresponding attractor map (Fig. 10c)

that H variations in the observed range are not significant.

The measured values of j and H are represented by the star

in Fig. 10c. Interpolation yields estimates of mantle material

production rate and viscosity contrast between matrix and

mantle material. This reveals that the viscosity contrast

between the matrix and the mantle was rather small, in the

range of 1/5–1/10, and the mantle material production rate is

approximately _Pz0:025. Thus, if the position of the mica

is indeed stable, it needs to produce 0.025% mantle material

(relative to b) per DgZ1 to maintain the present inclination.

Both obtained parameters, the effective mantle–matrix

viscosity contrast and the mantle material production rate,

are in a reasonable range that could be expected for natural

mylonites.
7.2. Shear strain estimation

The attractor map method has been derived as a tool for

estimating the rate at which mantle material is produced and

the viscosity contrast between matrix and mantle. However,

if it is possible to determine the total area of mantle material,

M, we can use the obtained estimate of _P to estimate the

total amount of shear strain. The corresponding equation is:

gZ 100
M

cb _P
(10)

where c is the circumference of the elliptical clast. The

natural clast example shown in Fig. 11 has very long and

narrow tails that are almost impossible to identify and

indicate a large amount of shear strain. Calculating based on

the clearly visible mantle material and evaluating Eq. (10)

yields a shear strain estimate of gz320. This is a rather

large value. However, over the 60 mm height of the picture
Fig. 11. Example of attractor map method application. 60-mm-high picture

of a mica fish from the Dent Blanche nappe. The shear sense in this picture-

parallel shear zone is top to left. Measured aspect ratio is a/bZ3, inclination

jZ148, and mantle thickness is Hz17. Photo courtesy G. Pennacchioni.
in Fig. 11 such a shear strain corresponds to differential

horizontal displacement of less than 2 cm.

Cases like the one shown in Fig. 11 where the area of the

mantle material cannot be determined may still yield shear

strain estimates. Assuming that the mantle material is

derived from the clast, knowledge of the original clast size

can be utilized to calculate g. In nature, statistics of clast

sizes inside and outside shear zones may be used to

approximate the amount of mantle material produced. Or it

may simply be assumed that the largest clast size outside the

shear zone corresponds to the largest clast size within the

shear zone. More generally, the method may be applicable

to poly-phase rocks that show a distinct orientation and

grain size when subjected to shear. These hypotheses should

and could be tested either by laboratory experiments with

torsion rigs, with field examples, or direct numerical

simulations.
8. Limitations of the attractor map method

In order to be able to tackle the complexity of the

mantled porphyroclast system we have made a number of

assumptions. Nevertheless, more than 8000 experiments

were necessary to infer the characteristic behavior of this

simplified system. Some of the major limitations of the

attractor map method are discussed in the following.

Clasts in natural mylonites can have complex forms that

substantially deviate from the elliptical shapes assumed.

However, it has been shown by Ferguson (1979) and

Arbaret et al. (2001) for the classical Jeffery solution that

even if strongly non-elliptical objects are used, the ellipse

shape-based theory remains an excellent approximation of

the rotational behavior. Concerning the validity of the

presented attractor maps we expect to see a similar

insensitivity to actual clast shape. Indeed, Mancktelow et

al. (2002) have shown that lubricated rhomboidal particles

show the same characteristic back-rotational and stable

inclination behavior as observed here.

Another limitation that should be considered is that in

nature clasts with systematic orientation are observed but

they do not have a visible mantle. Given the small mantle

material production rates required to stabilize clasts, the

lack of mantle surrounding the clast may be just apparent. In

cases where there is indeed no mantle present it may be

likely that such clasts have imperfect bonding to the matrix

(Samanta and Bhattacharyya, 2003), which may be

considered as the limiting case of a lubricant layer, where

the thickness goes to zero, normal tractions are continuous,

but shear tractions vanish. Therefore the clast behavior will

effectively follow the descriptions above. Yet, the attractor

maps will not be applicable since there is no actual lubricant

layer that is perfectly bonded to the clast and the matrix.

Previous explanations of systematic clast stabilization

have frequently been based on the combined effect of pure

and simple shear. This paper focuses only on simple shear
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and ignores possible pure shear components. If an additional

pure shear component is present the results may be altered;

however, mylonites are characterized by large amounts of

shear accumulated in relatively narrow zones and conse-

quently simple shear dominates the system. Under these

conditions, the combined pure and simple shear theory does

not exhibit stable inclinations and can be ruled out (Schmid

and Podladchikov, 2004).

Care has been taken to avoid boundary or clast

interaction effects. This simplifies the analysis but is to

some extent unrealistic since the clast densities in mylonites

may lead to clast interaction. It has been shown by Ildefonse

et al. (1992) that the interaction effects become significant if

individual clasts are closer than one diameter, and this

distance is assumed to be the limit of applicability of the

presented work. In addition, shear zone boundaries may

affect the behavior of natural clasts as pointed out by

Marques and Coelho (2001) and Taborda et al. (2004).

Another important aspect is that natural shear zones

accommodate large amounts of strain through strain

partitioning whereby large areas do not deform much and

most strain is concentrated in the narrow zones that make up

the so-called C–S fabrics (Berthe et al., 1979; Lister and

Snoke, 1984). If a C–S fabric is present, local shear flows

may differ from the bulk shear and consequently the shear

strain recorded by a clast may not be representative for the

bulk of the rock mass (ten Grotenhuis et al., 2002).
9. Conclusions

We have investigated the mantled porphyroclast in a

shear zone as a true three-phase system where the viscosity

of the mantle material is lower than the matrix and the

strong clast. We have shown that the introduction of a weak

mantle has a dominant influence on the distribution and

amplitudes of effective strain rates, pressures, and maxi-

mum shear stresses. The most prominent effects related to

the presence of a weak mantle are found in the clast

kinematics, where we demonstrated that for a large set of

parameters the clast has meta-stable positions that are

always at positive inclinations relative to the shear plane and

direction (attractor lines). In order to reach these positions

the clast can either rotate with the applied shear or against it,

depending on the starting position. If the mantle material

production rate is accounted for, then stable inclination

angles may result. These inclination angles range from 0 to

408, depending on the viscosity contrast between matrix and

mantle, the power-law exponent of the materials, the

thickness of the mantle, the mantle material production

rate, and the aspect ratio. Generally, the stable inclination

angle decreases with growing aspect ratio, which is in

agreement with observations of clasts in natural shear zones

(ten Grotenhuis et al., 2002).

Systematic investigation of the behavior of the lubricated

clast in a shear zone results in attractor maps. These maps
are a novel tool for estimating the mantle material

production rate and the viscosity contrast between mantle

and matrix by means of simple geometrical parameters. In

combination with the area of the clast and the mantle, the

knowledge of the mantle material productivity rate yields an

approximation for the total shear strain. In the absence of

conventional shear strain markers, such as vein offsets, this

new method can provide estimates for the shear strain.
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